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Preface

More Than an Emphasis on Mechanisms: 
Organized by Mechanism
During my first year of teaching organic chemistry, I taught what I have come to 
learn is a traditional approach. I organized the course the way that most textbooks are 
organized, with reactions pulled together according to the functional groups involved. 
Moreover, because I wanted my students to understand and not just memorize the 
material, I emphasized mechanisms very heavily. Despite my best efforts, the major-
ity of my students struggled with even the basics of mechanisms and, consequently, 
turned to flashcards as their primary study tool. They tried to memorize their way 
through the course, which made matters worse.

My goal in writing this book was to solve the problem of memorization by group-
ing reactions according to similarities in their mechanisms. Thus, while the content 
of this book is the same as in other mainstream textbooks, the different organization 
establishes a coherent story of chemical reactivity. The story begins with molecular 
structure and energetics, and then guides students into reaction mechanisms with a 
few transitional chapters. Thereafter, students study how and why reactions take place 
as they do, focusing on one type of mechanism at a time. Ultimately, students learn 
how to intuitively use reactions in synthesis.

As mechanisms are central to the story of the book, students are naturally deterred 
from overlooking them. Students are made to feel more comfortable with mecha-
nisms, and are clearly shown how the material builds from one chapter to the next, 
providing the foundation for understanding mechanisms in later chapters. Conse-
quently, early in the course, students naturally embrace mechanisms as a learning 
tool, which I believe is vital to their success throughout the entire course and later— 
including on admission exams such as the MCAT.

Advantages of a Mechanistic Organization
In terms of student success, an organization by mechanism type offers two main ad-
vantages over the traditional organization by functional group. First, it allows students 
to focus more on reaction mechanisms within each chapter. This is because, once stu-
dents are introduced to a particular reaction type, they get to apply those mechanisms 
across various functional groups. For example, after learning nucleophilic substitution 
reactions, students see that the mechanism applies to alkyl halides, alcohols, ethers, 
ketones,  aldehydes, amines, and carboxylic acids. Second, as students begin to see the 
mechanistic patterns that unfold in one chapter, they will develop a better toolbox of 
mechanisms to draw upon in subsequent chapters. Students will therefore be better 
able to predict what will happen and why. 

An organization by functional group, on the other hand, makes it very difficult for 
students to recognize patterns because each functional group chapter presents disjoint-
ed pieces of information related to that functional group. A functional group chapter 
 discusses aspects of nomenclature, physical properties, synthesis, and spectroscopy in 
 addition to new reactions and mechanisms. As a result, students find themselves over-
whelmed and most will see no option but to memorize. Specifically, they will memorize 
what they perceive to be most important—predicting products of reactions—and will 
typically ignore, or give short shrift to, fundamental concepts and mechanisms. 

  xxxiii
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I have now taught organic chemistry using a mechanistic organization for nearly 
a decade, during which time I have seen student performance and outlook improve 
dramatically.1 I believe it all begins with students having a better handle on concepts 
and reactions early on. In my experience, the greatest motivator for students to put 
forth effort is the feeling of understanding the material—the feeling of being in control 
over the material. Students who feel that they “get” it are vastly more motivated to put 
in an even greater effort. The better understanding that a mechanistic organization 
affords students at the outset, therefore, paves the way for their success throughout 
the entire course. 

Details about the Organization
The book is divided into three major parts:

Part I: Atomic and molecular structure

■ Chapter 1: Atomic structure, Lewis structures and the covalent bond, and resonance 
theory, culminating in an introduction to functional groups

■ Chapter 2: Aspects of three-dimensional geometry and its impacts on intermolecular 
forces

■ Chapter 3: Structure in terms of hybridization and molecular orbital (MO) theory
■ Chapters 4 and 5: Isomerism in its entirety, including constitutional isomerism, 

 conformational isomerism, and stereoisomerism

Part II: Developing a toolbox for working with mechanisms

■ Chapters 6 and 7: Ten elementary steps of mechanisms are examined.
■ Chapter 8: Beginnings of multistep mechanisms using SN1 and E1 reactions as 

 examples

Part II provides a transition into Part III, which deals more intently with reactions.

Part III: Major reaction types 

■ Chapters 9 and 10: Nucleophilic substitution and elimination 
■ Chapters 11 and 12: Electrophilic addition 
■ Chapters 17 and 18: Nucleophilic addition 
■ Chapters 20 and 21: Nucleophilic addition–elimination 
■ Chapters 22 and 23: Electrophilic aromatic substitution
■ Chapter 24: Diels–Alder reactions and other pericyclic reactions 
■ Chapter 25: Radical reactions
■ Chapter 26: Polymerization 

Notice that several of these chapters come in pairs. The first chapter in each pair is 
used to introduce key ideas about the reaction/mechanism and the second chapter 
explores the reaction/mechanism to greater depth and breadth.

Interspersed in Part III are chapters dealing with synthesis (Chapters 13 and 19), 
conjugation and aromaticity (Chapter 14), and spectroscopy (Chapters 15 and 16). 
The spectroscopy chapters are self contained and can be taught earlier, at the instruc-
tor’s discretion.

Another major structural component of the book pertains to nomenclature.  
Nomenclature is separated out from the main chapters, in four relatively short units. 
Each unit focuses on specific rules of nomenclature, as opposed to specific functional 
groups. With each new nomenclature unit, new rules are introduced, which increases 
the complexity of the material discussed. These units can be covered in lecture or easily 
assigned for self study.

1Bowman, B. G.; Karty, J. M.; Gooch, G. “Teaching a Modified Hendrickson, Cram and Hammond Curriculum in Organic 
Chemistry.” J. Chem. Ed. 2007, 84, 1209.
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Use the box provided to draw the product suggested by the faulty curved arrow 
notation in the following chemical equation. What is unacceptable about the 
product you drew? 

+HO ClH
–

7.2

7.10 Draw the SN2 step that would occur between  C6H5CH2I and CH3SNa.

Which species is the nucleophile? Which is the substrate? What do we do with the metal atom? Which species is elec-
tron rich? Electron poor?

C6H5CH2I will behave as the substrate because it possesses as I, a good  leaving group that departs as I2. The 
conjugate acid of I2, HI, is a very strong acid. CH3SNa has a metal atom that can be treated as a spectator ion and thus 
ignored. The nucleophile is therefore CH3S

2. In an SN2 step, a curved arrow is drawn from the lone pair of electrons on the 
electron-rich S atom to the electron-poor C atom bonded to I. A second curved arrow must be drawn to indicate that the 
CiI bond is broken (otherwise that C would have five bonds).

δ+

+
S –

+SH3C

CH3

– I
I

Finally, the application of MOs toward chemical reactions is separated from the 
main reaction chapters, and is presented, instead, as an optional, self-contained inter-
chapter. This interchapter appears just after Chapter 7, the overview of the 10 most 
common elementary steps. Each elementary step from Chapter 7 is revisited from the 
perspective of MO theory—more specifically, frontier MO theory. Because this inter-
chapter is optional, chapters later in the book do not rely on coverage of this material.

A Better Tool for Students
While the organization provides a coherent story, other aspects of the book make it an 
excellent learning tool for students. 

Extended coverage of general chemistry topics. The early chapters provide ex-
tended coverage of a variety of general chemistry topics. This is deliberate because I 
believe most students need a review of several of these topics upon entering organic 
chemistry. For example, I have found that most students do not have a firm grasp of 
Lewis structures, intermolecular forces, and equilibria and thermodynamics. Rather 
than assume that students will dive into their general chemistry textbook to review 
these topics, I have provided this additional material, with an organic focus, as a con-
venient student resource. Instructors can tailor their in-class coverage of this material 
as they deem necessary. 

Strategies for Success. In addition to reviewing important general chemistry top-
ics, I have provided Strategies for Success sections to help students build specific skills 
they need in this course. For example, Chapter 1 provides strategies for drawing all 
resonance structures of a given species, and sections in Chapters 2 and 3 are devoted 
to the importance of molecular modeling kits in working with the three-dimensional 
aspects of molecules and also with the different rotational characteristics of σ and π
bonds. In Chapter 4, students are shown how to draw chair conformations and how 
to draw all constitutional isomers of a given formula. Chapter 5 provides help with 
drawing mirror images of molecules. One Strategies for Success section in Chapter 
6 helps students estimate pKa values and another helps students rank acid and base 
strengths based only on their Lewis structures. In Chapter 14, I include a section that 
shows students how to use the Lewis structure to assess conjugation and aromaticity, 
and Chapter 16 has a section that teaches students the chemical distinction test for 
nuclear magnetic resonance. 

Your Turn exercises. Getting students to read active-
ly can be challenging, so I wrote the Your Turns in each 
chapter to motivate this type of behavior. Your Turns are 
basic exercises that ask students to either answer a ques-
tion, look something up in a table from a previous chap-
ter, construct a molecule using a model kit, use a table in 
the chapter, or interact with art in a figure or data in a 
plot. In addition to getting students active when they read, these exercises are intended 
to be “reality checks” for students as they read. Your Turns should be used as indicators 
to students as to whether they understand what they have just read. If they cannot 
solve/answer a Your Turn exercise easily, students should interpret this as a signal 
that they need to either reread the previous section(s) or seek help. Short answers to 
all Your Turns are provided in the back of the book and 
complete solutions to these exercises are provided in the 
Study Guide and Solutions Manual.

Consistent and effective problem-solving approach. 
Helping students become expert problem-solvers, in 
this course and beyond, is one of my major goals. I have  
developed the Solved Problems in the book to train 
students how to think as they approach a problem. On  
average, there are seven Solved Problems per chapter and 
each one is broken down into two parts: Think and Solve. 
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In the Think part, students are provided a handful of questions that I want them to be 
asking as they approach the problem. In the Solve part, those questions are answered 
and the problem is solved. This mirrors the strategy I use to help students during office 
hours, and we have used these same steps for every problem in the Solutions Manual 
that accompanies the book. 

Another excellent training tool is SmartWork, Norton’s online tutorial and home-
work system. SmartWork allows students to practice their problem-solving skills 
and receive hints and answer-specific feedback that reinforce what students see in 
the book. 

Developing a toolbox of mechanisms. Understanding the common elementary 
steps that make up mechanisms is a crucial part of solving organic chemistry prob-
lems. The elementary steps introduced in Chapters 6 and 7 effectively provide students 
a toolbox for working comfortably with mechanisms later on. Moreover, students will 
find that many reactions they encounter throughout the course have mechanisms that 
comprise just these steps. This makes it more transparent to students how seemingly 
different reactions can, in fact, be very closely related—through the mechanism.

Separating nomenclature. As I discussed earlier, nomenclature is presented in 
four separate units, interspersed between chapters in the first half of the book. These 
units are self-contained and they can be covered where they are located in the textbook 
or any point after. One of the main reasons for presenting nomenclature separately is 
that it helps minimize distractions. A second reason for separate coverage of nomen-
clature is that nomenclature is among the most straightforward topics students will 
encounter. Naming a molecule requires memorizing certain rules and then practicing 
applying those rules. This is something that students are quite comfortable with, so 
instructors have the option of holding students accountable for learning nomenclature 
on their own or covering it in class.

Biochemistry and MCAT 2015. Most organic chemistry students are biology ma-
jors and/or are seeking a career in a health profession. They appreciate seeing how organ-
ic chemistry relates to their interests and look for ways in which this course will prepare 
them for the admissions exams (such as the MCAT) that may determine their future. 

Rather than relegating biochemistry to the end of the book, I have placed the 
Organic Chemistry of Biomolecules in self-contained sections at the ends of several 
chapters, beginning with Chapter 1. The topics chosen for these sections cover many 
of the topics outlined in the MCAT 2015 Preview Guide, which means that the 
Organic Chemistry of Biomolecules sections are not in addition to what students are 
expected to know for the MCAT; they are topics that students should know for the test. 
In even the earliest of chapters, students have the tools to start learning aspects of this 
traditional biochemistry coverage. More importantly, these sections provide reinforce-

ment of topics. In each biomolecules section, the material is linked 
directly back to concepts encountered earlier in the chapter.

These Organic Chemistry of Biomolecules sections are both 
optional and flexible. Instructors can decide to cover only a few 
of these topics or none at all, and can do so either as they appear 
in the book or as special topics at the end of the second semester.

A range of interesting applications. In addition to the Or-
ganic Chemistry of Biomolecules sections, most chapters have two 
special interest boxes. These boxes apply a concept in the chapter 
to a discovery or process that students can relate to. In addition to 
reinforcing concepts from the chapter, these boxes are intended 
to provide meaning to what students are learning, and to motivate 
students to dig deeper.

A focus on synthesis. Synthesis problems represent one of the 
greatest challenges undergraduates face in this course. Not only 
must students have a command of the reactions they have learned, 
but they must also be able to think critically to find the right com-
bination of those reactions that will transform the starting mate-

Proton transfer reactions are among the simplest of reactions, but they can be a powerful tool 
in our never-ending quest to discover new drugs. The key, as we learned here in Chapter 8, is 
that proton transfer reactions tend to be quite fast, and there are several mildly acidic protons 
throughout the structure of a protein, both in the amide groups that make up the protein’s back-
bone and in the side groups of certain amino acids. If a protein is dissolved in deuterated water 
(D2O), these protons can exchange with the D atoms of the solvent via simple proton transfer 
reactions. The rate of this H/D exchange can be monitored with mass spectrometry (see  
Chapter 16), because the atomic mass of D is greater than that of H. 

How can this help us discover new drugs? The answer lies in the fact that drugs are typically 
designed to bind to target proteins that are in their folded state, as shown below. A potentially 
viable drug, therefore, will help keep the protein folded, preventing D2O from exchanging with 
protons on the interior of the protein. Overall, then, the rate of H/D exchange will be slowed.

A drug bound to a protein stabilizes

the protein in its folded state.

H/D exchange

Drug Drug

D2O

H D

This technique is especially attractive because it requires only picomole amounts of protein, can 
be carried out even in the presence of impurities, and can be automated. As many as 10,000 
potential drugs can be tested in a single day!
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rial into the desired compound. I provide a thorough introduction to organic synthesis 
in two chapters—Chapters 13 and 19. Chapter 13 discusses introductory topics in 
synthesis, including the basics of retrosynthetic analysis and the idea of cataloging 
reactions according to what they accomplish. Chapter 19 presents more challenging 
topics in synthesis, such as the use of protecting groups and how to place functional 
groups strategically within a carbon backbone. Therefore, whereas Chapter 13 ought 
to be covered by most mainstream classes, instructors can choose to cover only certain 
sections of Chapter 19 or skip it entirely.

I have found that treating synthesis in dedicated chapters makes it more mean-
ingful to students. When I taught synthesis under a traditional functional group or-
ganization, it became a distraction to the reactions that students are simultaneously 
learning. I also found that students often associated a synthetic strategy only with the 
functional group for which it was introduced. For example, when the idea of protect-
ing groups is introduced in the ketones/aldehydes chapter of a textbook tradition-
ally organized by functional group, students tend to associate protecting groups with 
 ketones/aldehydes only. My dedicated synthesis chapters help students focus on syn-
thesis without compromising their focus on reactions. Furthermore, synthesis strate-
gies are discussed more holistically, so students can appreciate them in a much broader 
context rather than being applicable to a single functional group. 

Optional interchapter on the application of MO theory toward reactions. 
Under an organization according to functional group, the roles of MOs in chemical 
reactions typically appear integrated into several different functional group chapters. 
For example, the role of orbitals in an SN2 reaction is typically integrated in an alkyl 
halides chapter, and the role of orbitals in a nucleophilic addition reaction is typically 
integrated into the ketones/aldehydes chapter. For instructors who do not teach this 
aspect of MOs in their course, these discussions can represent distractions and are 
potentially counterproductive to student learning. 

Presenting this material together in an optional interchapter, as I have done in 
this book, offers two main advantages to students. One is that it removes a poten-
tial distraction from the main reaction chapters and, being optional, instructors have 
the choice of not covering it at all. Another advantage comes from the fact that the 
MO pictures of all 10 common elementary steps appear together in the interchapter. 
Therefore, instructors who wish to cover this interchapter can expect their students 
to come away with a better understanding of the bigger picture of MO theory as it 
pertains to chemical reactions.
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Additional Resources
For Students
Study Guide and Solutions Manual

by Joel Karty, Elon University, and Marie Melzer, Old Dominion University

Written by two dedicated teachers, this guide provides students with fully worked solu-
tions to all unworked problems in the text. Every solution follows the Think/Solve for-
mat used in the textbook, so the approach to problem-solving is modeled consistently.

SmartWork

Created by chemistry educators, SmartWork is the most intuitive online tutorial and 
homework system available for organic chemistry. A powerful engine supports and 
grades an unparalleled range of problems written for Karty’s text, including numerous 
arrow-pushing problems. Every problem in SmartWork has hints and answer-specific 
feedback to coach students and provide the help they need, when they need it. Prob-
lems in SmartWork link directly to the appropriate page in the electronic version of 
Karty’s text so students have an instant reference and are prompted to read.

Instructors can draw from Norton’s bank of more than 2000 high-quality, class-
tested problems, or use our innovative authoring tools to easily modify existing prob-
lems or write new ones. Instructors can sort problems by learning goal and create 
assignments to assess any learning goals, concepts, or skills that they choose.

The Karty SmartWork course also features:

■ An expert author team. The organic SmartWork course was authored by instructors 
who teach at a diverse group of schools: Arizona State University, Florida State Uni-
versity, Brigham Young University, and Mesa Community College. The authors have 
translated their experience in teaching such a diverse student population by creating 
a library of problems that will appeal to instructors at all schools. 

Harold Rogers, California State 
 University–Fullerton

Sheryl Rummel, Pennsylvania State 
University

Nicholas Salzameda, California State 
University, Fullerton

Adrian Schwan, University of Guelph

Colleen Scott, Southern Illinois 
 University–Carbondale

Sergei Dzyuba, Texas Christian  University

Alan Shusterman, Reed College

Joseph Simard, University of New  England

Chad Snyder, Western Kentucky  University

John Sorensen, University of Manitoba

Levi Stanley, Iowa State University

Laurie Starkey, California State 
 University–Pomona

Tracy Thompson, Alverno College

Nathan Tice, Butler University

John Tomlinson, Wake Forest University

Melissa VanAlstine-Parris, Adelphi 
 University

Nanine Van Draanen, California 
 Polytechnic State University–San Luis 
Obispo

Quin Wang, University of South Carolina

Don Warner, Boise State University

Haim Weizman, University of California–
San Diego

Lisa Whalen, University of New Mexico

James Wilson, University of Miami

Laurie Witucki, Grand Valley State 
University

James Wollack, St. Catherine University

Andrei Yudin, University of Toronto

Michael Zagorski, Case Western Reserve 
University

Rui Zhang, Western Kentucky University

Regina Zibuck, Wayne State University

Eugene Zubarev, Rice University

James Zubricky, University of Toledo



 Preface  /  xli

■ Pooled drawing and nomenclature problems. SmartWork features sets of pooled 
problems for drawing and nomenclature to promote independent work. Groups of 
similar problems are “pooled” into one problem so different students receive different 
problems from the pool. Instructors can choose our preset pools or create their own.

For Instructors
Instructor’s Guide

by Stephen R. Pruett, Jefferson Community and Technical College 

Written by one of the first users of Joel’s material, each chapter in the Instructor’s 
Guide begins with a brief overview of the chapter, followed by a more detailed 
 section-by-section discussion that includes information on differences between this 
book and textbooks with a functional group organization. 

Pruett includes suggestions on how to present difficult concepts to students, and, 
incorporating his experiences teaching with the preliminary edition of the textbook, 
documents information about his and his students’ experiences with the material. Sug-
gested clicker questions from Clickers in Action: Active Learning in Organic Chemistry 
and a section on additional resources (such as specific websites, articles, or books) that 
instructors can incorporate into their course round out each chapter. The Instructor’s 
Guide includes a chapter for each of the 26 chapters in the textbook, plus a chapter for 
the MO theory interchapter and a chapter for the nomenclature units.

Clickers in Action: Active Learning in Organic Chemistry

by Suzanne M. Ruder, Virginia Commonwealth University

This instructor-oriented resource provides information on implementing clickers in 
organic chemistry courses. Part I gives instructors information on how to choose and 
manage a classroom response system, develop effective questions, and integrate the 
questions into their courses. Part II contains 140 class-tested, lecture-ready ques-
tions. Most questions include histograms that show actual student response, gener-
ated in large classes with 200–300 students over multiple semesters. Each question 
also includes insights and suggestions for implementation. The 140 questions from 
the book and an additional 100 lecture-ready questions are available in PowerPoint, 
sorted to correspond to the chapters in the textbook, at wwnorton.com/instructors.

Test Bank

by Amy M. Deveau, University of New England; James Wollack, St. Catherine  
University; and Alexandra Jones, St. Catherine University

The Test Bank contains more than 1300 multiple-choice and short-answer questions. 
Questions are organized by chapter section, and each question is ranked by difficulty 
and type. Questions are further classified by learning objectives. The list of learning 
objectives provided at the beginning of each chapter makes it easy to find questions 
that test each objective. 

The Test Bank is available in print, ExamView Assessment Suite, Word RTF, and 
PDF formats.

ExamView Test Generator Software

All Norton test banks are available with ExamView Test Generator software, allowing 
instructors to effortlessly create, administer, and manage assessments. The convenient 
and intuitive test-making wizard makes it easy to create customized exams with no 
software learning curve. Other key features include the ability to create paper ex-
ams with algorithmically generated variables and export files directly to Blackboard, 
 WebCT, and Angel.
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Instructor’s Resource Disc

This helpful classroom presentation tool features:

■ Select photographs and every piece of line art in JPEG format
■ Select photographs and every piece of line art in PowerPoint
■ Lecture PowerPoint slides with integrated figures from the book
■ Clicker questions from Clickers in Action: Active Learning in Organic Chemistry

Downloadable Instructor’s Resources  
(wwnorton.com/instructors) 

This instructor-only, password-protected site features instructional content for use in 
lecture and distance education, including test-item files, PowerPoint lecture slides, 
images, figures, and more. The instructor’s website includes: 

■ Select photographs and every piece of line art in JPEG format
■ Select photographs and every piece of line art in PowerPoint
■ Lecture PowerPoint slides with integrated figures from the book
■ Clicker questions from Clickers in Action: Active Learning in Organic Chemistry
■ Instructor’s Guide in PDF format
■ Test bank in PDF, Word RTF, and ExamView formats

Author Blog: www.teachthemechanism.com

Starting in July 2012, Joel Karty and Steve Pruett started blogging about Joel’s ap-
proach and their experience teaching a course organized by mechanism. In addition to 
written posts, the blog includes videos of Joel discussing his approach and answering 
some of the questions he is frequently asked about teaching a mechanistically orga-
nized course. Guest bloggers, most of whom have adopted Karty’s text, have also con-
tributed their stories and insights about teaching a course organized by mechanism. 
You are encouraged to visit the blog and submit comments of your own.

Preface for the Student
Organic Chemistry and You
You are taking organic chemistry for a reason—you might be pursuing a career in 
which an understanding of organic chemistry is crucial, or the course might be re-
quired for your particular field of study, or both. You might even be taking the course 
simply out of interest. Regardless of the reason, organic chemistry impacts your life 
in significant ways.

Consider, for example, the growing concern about the increasing resistance of bac-
teria to antibiotics. Perhaps no germ has caused more alarm than methicillin- resistant 
Staphylococcus aureus (MRSA), a type of bacteria responsible for “staph” infections. 
Methicillin is a member of the penicillin family of antibiotics, and resistance to methi-
cillin in these bacteria was first observed in 1961. Today MRSA, which has been called 
a “superbug,” is resistant to most antibiotics, including all penicillin-derived antibiotics. 

A breakthrough in the fight against MRSA occurred in 2006 with the discovery of 
a compound called platensimycin, isolated from Streptomyces spores. 
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H
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PlatensimycinStreptomyces spores
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The way that platensimycin targets bacteria is different from that of any other 
antibiotic in use and, therefore, it is not currently susceptible to bacterial resistance. 

Platensimycin is found in a type of South African mushroom, Streptomyces platensis, 
and was discovered by screening 250,000 natural product extracts for antibacterial 
activity. Sheo B. Singh (Merck Research Laboratories) and coworkers determined 
the structure of platensimycin using a technique called nuclear magnetic resonance 
(NMR) spectroscopy, which we discuss in Chapter 16. Not long after, K.C. Nicolaou 
and coworkers from The Scripps Research Institute (La Jolla, California) and the Uni-
versity of California, San Diego, were the first to devise a synthesis of platensimycin 
from other readily available chemicals.

The story of platensimycin, from discovery to synthesis, involves several of the 
subdisciplines that make up the field of organic chemistry. 

■ Biological chemistry (biochemistry): The study of the behavior of biomolecules and 
the nature of chemical reactions that occur in living systems. 

■ Structure determination: The use of established experimental techniques to deter-
mine the structure of newly discovered compounds. 

■ Organic synthesis: The design of pathways for making new compounds from existing, 
readily available compounds by means of known organic reactions. 

Because each of these areas typically focuses on solving existing and practical 
problems, they are considered to be applied areas of organic chemistry. However, other 
areas of organic chemistry, considered to be theoretical in nature, provide the founda-
tions on which such applications rest. They focus on answering questions about the 
“how” and “why” of chemical processes. For example, an understanding of the basic 
principles of NMR spectroscopy (an analytical technique discussed in Chapter 16) 
underlies our ability to determine molecular structure. Understanding the principles 
that govern organic reactions (such as those involved in the synthesis of platensimy-
cin) may allow us to enhance yields, not only by altering reaction conditions, but also 
perhaps by devising entirely new synthesis schemes. And understanding platensimy-
cin’s specific mode of attack on bacteria will likely guide us in modifying its chemical 
structure to make it even more effective.

The story of platensimycin showcases the importance of organic chemistry in the 
pharmaceutical industry, but organic chemistry is at the center of other high-profile 
areas as well, including the fabrication of new materials such as plastics (the topic of 
Chapter 26). The durability and chemical stability of plastics have made them excel-
lent choices for use in food packaging (Fig. P.1a) and the fabrication of the artificial 
heart (Fig. P.1b). Plastics are the source of synthetic fibers such as nylon and polyes-
ter, which are often used in the clothing industry, as well as Kevlar®, which is used 
to make body armor (Fig. P.1c). Composite materials made from plastic and carbon 
fibers are so strong that some commercial jets are now constructed with a body made 
largely from plastics (Fig. P.1d).

FIGURE P.1 Some uses of 

plastics Plastics, which are designed 
and created in the laboratories of organic 
chemists, are found in a wide range of 
products, such as (a) food packaging, 
(b) an artificial heart, (c) body armor 
made from Kevlar®, and (d) a Boeing 787, 
a commercial jet whose body consists 
largely of composite materials made 
from plastics and carbon fibers.

(a) (d)(b) (c)
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Organic chemistry has also been at the forefront of generating new materials for 
electronic devices. Organic light-emitting diodes (OLEDs) are the main components 
of full-color electronic displays (Fig. P.2a), and single organic molecules can be used to 
make electronic switches tens of thousands of times smaller than those used in today’s 
integrated circuits (Fig. P.2b). 

Perhaps even more important to our lives is the impact that organic chemis-
try can have on our ability to understand, and solve, environmental problems, such 
as overflowing landfills (Fig. P.3a), the destruction of the stratospheric ozone layer  
(Fig. P.3b), and global warming (Fig. P.3c). Organic chemistry, for example, is helping 

(a)

FIGURE P.3 Organic chemistry and the 

environment Organic chemistry continues to play a 
significant role in solving environmental problems, such 
as (a) overflowing landfills, (b) ozone depletion (the area 
in blue represents the “ozone hole” over Antarctica), and 
(c) global warming (the ice sheets in Montana’s Glacier 
National Park have been melting at a dramatically 
accelerating rate over the past 90 years).

(b)

(c)

(a) (b)

FIGURE P.2 Organic chemistry in 

the electronics industry (a) A full-
color digital display made from organic 
light-emitting diodes. (b) A molecular 
switch in which an organic molecule joins 
together two carbon nanotubes—sheets 
of carbon in the form of cylinders with a 
diameter on the order of 10−9 meters.
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provide new ways to recycle waste materials. Additionally, organic chemistry has been 
used to engineer new coolants that are safer for the environment than the chlorofluo-
rocarbons (CFCs) used in the late 20th century in refrigerators and air conditioners. 
Finally, organic chemistry may lead us to economically feasible processes by which 
we can synthesize hydrogen gas, a fuel whose combustion product is only water. This 
could be a welcome alternative to coal and oil, whose combustion products not only 
cause air and water pollution, but also generate carbon dioxide, one of several green-
house gases responsible for global warming.

Because organic chemistry is important in so many ways, you will find interest 
boxes in each chapter, which show how the material in the chapter directly connects 
to issues that you might find more relevant or more interesting. Take the time to read 
those boxes, and consider researching them even further. 

Some Suggestions for Studying
Perhaps you have heard that organic chemistry is difficult. Perhaps you have heard 
that it requires an enormous amount of memorization. Are these statements true? It 
depends on how you approach the course. What is true is that this book contains a lot 
of information—much more than you can memorize. There is a better way.

Organic chemistry can be understood through models and theories that are built 
upon fundamental concepts. Consider, for example, that when two compounds react un-
der a given set of conditions, the outcome of that reaction is precisely the same each 
and every time. Is this because the reactant molecules have memorized what products 
they are supposed to make? No—they are obeying certain chemical laws, and those 
laws can be learned.

You will spend considerable effort throughout this course developing those models  
and theories. Reaction mechanisms—detailed steps that show how reactions take 
place—are among the most important ideas to develop. If you devote your time and 
energy to understanding them and learning how they are applied toward solving 
problems, you will find that much of organic chemistry can be conquered without rote 
memorization, and you will find the course to be quite rewarding and enjoyable. The 
skills you develop in organic chemistry will apply to complex situations you will face 
beyond this course. 

If you are planning on a career in a health profession, it is particularly important 
for you to focus on understanding and applying concepts as opposed to memoriz-
ing. On standardized exams like the MCAT, you will often need to choose between 
answers that are designed to look equally good to students who have memorized the 
material. To a student who is well versed in applying concepts and mechanisms toward 
solving problems, on the other hand, those choices are more easily discernible.

In light of how important it is to understand concepts and mechanisms, your suc-
cess in this course will demand a lot of time and devotion. The following are sugges-
tions for using that time, and this book, most efficiently:

■ Read actively and diligently. You should try to read the assigned sections before class 
if possible. Reading prior to lecture means that lecture is the second time you’ll be 
presented the material. This will allow you to better process information and give you 
ample opportunity to ask pertinent questions. When you read, you should have a pen 
or pencil in hand so you can underline or highlight what you feel is important, and 
take notes about what you find enlightening or confusing. When the text refers to a 
figure or reaction mechanism, take that as a cue to study that figure now. Be sure that 
what the text is describing makes sense to you before you move on. If you are referred 
to a previous chapter, flip to the appropriate page to refresh your memory.

■ Your Turns. The “Your Turn” exercises are relatively short activities that ask you to 
complete a task based on what you have just read. These exercises were developed to 
help you remain actively engaged while you read. They should also help you quickly 
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evaluate whether or not you understand the topic at hand. I encourage you to work 
through all Your Turn exercises in each chapter and quickly check the answers in the back 
of the book. Feedback from students who have used this book supports this advice.

■ Problems. As with anything new you attempt, mastery requires practice. Most of 
your practice should come from solving problems. I have included nearly 2000 prob-
lems throughout this book. Many are integrated into the chapters, but most are gath-
ered at the end of each chapter. Take the time to work through as many problems as 
possible, and use them to assess areas of strength and weakness.

That said, it’s time to get started. Keep your focus on concepts and mechanisms, and 
work hard!



Q How does this book benefit preprofessional (premed, predent, 
prepharm) students?

A The mechanistic organization benefits preprofessional students in two major ways.  
First, students who are more competent with mechanisms will have better success in 

the course—a course for which a student’s performance is considered by many medical,  
dental, and pharmacy school admissions committees. Second, students will be better poised 
for standardized exams like the MCAT. Many questions on these exams are written to make  
all the answer choices look correct to those who don’t understand the material. 

Moreover, in 2015 the MCAT will be expecting more biochemistry of students, and my 
Organic Chemistry of Biomolecules sections provide instructors a 
convenient and meaningful way to incorporate more biochemistry 
content throughout the year. The topics chosen for these sections 
cover many of the topics outlined in the MCAT 2015 Preview Guide, 
which means that the Organic Chemistry of Biomolecules sections 
are not in addition to what students are expected to know for the 
MCAT. They are topics that students should know for the test.

Q  What is a specific example 
of reactions that are learned 

together in this book but not in 
textbooks organized according to 
functional groups?

A One example is in Chapter 10, where alpha 
alkylation and Hofmann elimination are  

discussed in the context of nucleophilic substitution 
and elimination reactions. Traditionally, the discus-
sion of nucleophilic substitution and elimination is 
reserved for the alkyl halides chapter, alpha  
alkylation is discussed in a chapter on ketones and 
aldehydes, and Hofmann elimination is relegated  
to an amines chapter. 

Q How do you handle a student who 
transfers and uses a traditionally organized 

book for the other semester? 

A In my experience (and that of some class testers), transfer 
students have not been affected by the organization. When 

students enter my Organic II course having taken Organic I else-
where, I ask them to read Chapters 6 and 7. When students who 
have used my book in Organic I transfer to a different institution 
for Organic II, they are well prepared to be 
successful no matter where they transfer. I 
have administered the first-semester ACS 
exam to my students each year of its exis-
tence, and my students routinely average 
significantly above the fiftieth percentile.

Q Can this book work with “flipping” the  
classroom?

A I have been using such an approach in my own classroom for several 
years. This textbook is well suited for flipping the classroom, for two 

main reasons. First, the organization helps students maintain focus on 
understanding as opposed to memorizing, so they are well poised to apply 
that understanding toward solving problems in class. Second, I have written 
the text to be accessible to students, and I have included pedagogical 
features to help keep students engaged as they read—including Your Turn 
exercises and Solved Problems, which pose questions in the Think step.
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Very likely you have heard that organic chemistry is “the chemistry of 

life.” Inherent to this description is the idea that certain types of com-

pounds, and the reactions they undergo, are suitable to sustain life, 

while others are not. If so, what are the characteristics of such compounds 

and what advantages do those compounds afford living organisms? Here in 

 Chapter 1 we will begin to answer these questions.

We will review several aspects of atomic and molecular structure typically 

covered in a general chemistry course, including ionic and covalent bonding, the 

basics of Lewis structures, and resonance theory. With such a general founda-

tion, we will then begin to tighten our focus on organic molecules. We will present 

various types of shorthand notation that organic chemists often use and we will 

introduce you to functional groups commonly encountered in organic chemistry.

Toward the end of this chapter, we will shift our focus to examin-

ing specific classes of biomolecules: amino acids, monosaccha-

rides, and nucleotides. Not only will such a discussion provide 

insight into the relevance of organic chemistry to biological sys-

tems, but it will also reinforce specific topics discussed in the 

chapter, such as functional groups.

Organic chemistry is often referred 
to as the  chemistry of life, because 
biological compounds such as DNA, 
proteins, and carbohydrates are themselves 
organic molecules. In this chapter, we will examine 
some of the bonding characteristics of these and 
other organic  molecules, which are constructed 
primarily from carbon,  hydrogen, nitrogen, and oxygen.
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1.1 What Is Organic Chemistry?
Before beginning our study of organic chemistry, we ought to have an 
idea of what organic chemistry is. Very crudely, organic chemistry is 
the branch of chemistry involving organic compounds. What, then, is 
an organic compound? 

In the late 1700s, scientists defined an organic compound as 
one that could be obtained from a living organism, whereas in-
organic compounds encompassed everything else. It was believed 
that organic compounds could not be made in the laboratory; in-
stead, only living systems could summon up a mysterious “vital 
force” needed to synthesize them. This belief was called vitalism. 
Using this definition, many familiar compounds, such as glucose  
(a sugar), testosterone (a hormone), and deoxyribonucleic acid 
(DNA) are organic (Fig. 1-1).

This definition of organic compounds broke down in 1828, when 
Friedrich Wöhler (1800–1882), a German physician and chemist, 
synthesized urea (an organic compound known to be a major com-
ponent of mammalian urine) by heating a solution of ammonium 
cyanate (an inorganic compound; Equation 1-1).Within a couple of 
decades after Wöhler’s discovery, vitalism was dead.

(NH4)
+(NCO)–

Ammonium cyanate

An inorganic

compound

An organic

compound

Urea

Heat
(1-1)C

H2N

O

NH2

With the end of vitalism, another definition was needed to de-
scribe the many compounds that were already labeled as organic. 
Gradually, chemists arrived at our modern definition:

An organic compound is composed primarily of carbon and 
 hydrogen.

This definition, however, is still imperfect, because it leaves 
considerable room for interpretation. For example, many chem-
ists would classify carbon dioxide (CO2 ) as inorganic because it 

FIGURE 1-1 Some familiar organic 

compounds Glucose, testosterone, and 
DNA are organic compounds produced by 
living organisms. Glucose Testosterone DNA
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Upon completing Chapter 1 you should be able to:

● Distinguish organic compounds from inorganic 
ones.

● Explain the advantages brought about by the fact 
that carbon is the basis of organic molecules.

● Describe the basic structure of an atom and 
understand that the vast majority of its volume 
is taken up by electrons.

● Determine the ground state electron configura-
tion of any atom in the first three rows of the 
periodic table and distinguish valence electrons 
from core electrons.

● Define bond length and bond energy and 
understand how these two quantities change 
with increasing numbers of bonds between a 
given pair of atoms.

● Draw the Lewis structure of a species, given 
only its connectivity and total charge.

● Differentiate between a nonpolar covalent bond, 
a polar covalent bond, and an ionic bond, and 
distinguish a covalent compound from an ionic 
compound.

● Assign a formal charge and an oxidation state 
to any atom in a molecular species, given only 
its Lewis structure.

● Describe what a resonance structure is and 
explain the effect that resonance has on a 
species’ stability.

● Draw all resonance structures of a given species, 
as well as its resonance hybrid, and determine 
the relative stabilities of resonance structures.

● Draw and interpret Lewis structures, condensed 
formulas, and line structures.

● Explain why functional groups are important and 
identify functional groups that are common in 
organic chemistry.

CHAPTER OBJECTIVES
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does not contain any hydrogen atoms, whereas others would argue that it is organic 
because it contains carbon and is critical in living systems. In plants, it is a starting 
material in photosynthesis, and in animals, it is a byproduct of respiration. Simi-
larly, tetrachloromethane (carbon tetrachloride, CCl4 ) contains no hydrogen, but 
many would classify it as an organic  compound. Butyllithium (C4H9Li), on the 
other hand, is considered by many to be inorganic, despite the fact that 13 of its 
14 atoms are carbon or hydrogen. (In Chapter 17, we will learn that the behavior 
of such compounds containing metal atoms, called organometallic compounds, is 
substantially different from that of typical organic compounds.) Rest assured that 
although this definition of an organic compound has its inadequacies, it does allow 
chemists to agree on the classification of most molecules.

Historians place the birth of organic chemistry as a distinct field around the time 
that vitalism was dismissed, thus making the discipline less than 200 years old. How-
ever, humans have taken advantage of organic reactions and the properties of organic 
compounds for thousands of years! Since about 6000 b.c., for example, civilizations 
have fermented grapes to make wine. Some evidence suggests that Babylonians, as 
early as 2800 b.c., could convert oils into soaps. 

Many clothing dyes are organic compounds. Among the most notable of these 
dyes is royal purple, which was obtained by ancient Phoenicians from a type of aquat-
ic snail called Bolinus brandaris (Fig. 1-2). These organisms produced the compound 
in such small amounts, however, that an estimated 10,000 of them had to be processed 
to obtain a single gram of dye. This effectively limited the availability of the dye only 
to those who had substantial wealth and resources—royalty.

Organic chemistry has matured tremendously since its inception. Today, we can 
not only use organic reactions to reproduce complex molecules found in nature, but 
also engineer new molecules never before seen.

1.2 Why Carbon?
There is no question that the chemistry of life is centered primarily around the carbon 
atom. The backbones of familiar biomolecules like DNA, proteins, and carbohydrates 
are all composed primarily of carbon. Why does the carbon atom play this central role 
and what is so special about it?

One of the main reasons must be the diversity of compounds possible when carbon 
is their chief structural component. As we will see in  Section 1.6, the  carbon atom 
is capable of forming four covalent bonds to other atoms—especially other carbon 
atoms. Consequently, carbon atoms can link together in chains of almost any length, 
allowing for an enormous range in molecular size. Moreover, the ability to form four 
bonds means there is potential for branching at each carbon in the chain. And each 
carbon atom is capable of forming not only single bonds, but double and triple bonds 
as well. These characteristics make possible a tremendous number of compounds, even 
with a relatively small number of carbon atoms. Indeed, to date, tens of millions of 
 organic compounds are known, and the list is growing rapidly as we continue to dis-
cover or synthesize new compounds.

FIGURE 1-2 Royal purple Ancient 
Phoenicians processed about 10,000 
aquatic snails, Bolinus brandaris (left), 
to yield 1 g of “royal purple” dye. The 
structure of the molecule responsible  
for the dye’s color is shown at right. “Royal purple”Bolinus brandaris
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A chain of carbon atoms

with single bonds only

With a chain of oxygen atoms, no double

bonds, triple bonds, or branching is possible.

A chain of carbon atoms with

a double and triple bond

A branched chain

of carbon atoms

C C C C CC

O O O O O OO

C

C

C

C C C

C C C C CC

This same kind of diversity would not be possible in compounds based on another 
element, such as oxygen. Oxygen atoms are most stable when they form two covalent 
bonds, so they could form a linear chain only (as shown in the hypothetical example 
above). No branching could occur, nor could other groups or atoms be attached to the 
chain except at the ends. Furthermore, the atoms along the chain could not participate 
in either double or triple bonds.

If carbon works so well, then why not silicon, which appears just below carbon in 
the periodic table? Elements in the same group (column) of the periodic table tend 
to exhibit similar chemical properties, so silicon, too, can form four covalent bonds, 
giving it the same potential for diversity as carbon.

The answer is stability. As we will see in Section 1.4, the carbon atom tends to 
form rather strong bonds with a variety of atoms, including other carbon atoms. For 
example, it takes 339 kJ/mol (81 kcal/mol) to break an average CiC single bond, 
and 418 kJ/mol (100 kcal/mol) to break an average CiH bond. By contrast, it takes 
only 223 kJ/mol (53 kcal/mol) to break a typical SiiSi bond. The strength of typical 
bonds involving carbon atoms goes a long way toward keeping biomolecules intact—
an essential characteristic for molecules whose job it is to store information or provide 
cellular structure. 

Even though organic molecules are based on the carbon atom, what would life 
be like if silicon atoms were to replace carbon atoms in biomolecules such as glucose  
(C6H12O6 )? Glucose is broken down by our bodies through respiration to extract 
energy, according to the overall reaction in Equation 1-2. One of the byproducts is 
carbon dioxide, a gas, which is exhaled from the lungs. In a world in which life is based 
on silicon, glucose would be Si6H12O6 , and its byproduct would be silicon dioxide 
(SiO2 ), as shown in Equation 1-3. Silicon dioxide, a solid, is the main component of 
sand; in its crystalline form, it is known as quartz (Fig. 1-3).

 C6H12O6 1 6 O2 b 6 CO2 1 6 H2O (1-2)

 Si6H12O6 1 6 O2 b 6 SiO2 1 6 H2O (1-3)

1.3  Atomic Structure and Ground State 
Electron Configurations

In Section 1.2, we saw that carbon’s bonding characteristics are what give rise to the 
large variety of organic molecules. Those bonding characteristics, and the bonding 
characteristics of all atoms, are governed by the electrons that the atom has.

With this in mind, Section 1.3 is devoted to the nature of electrons in atoms. 
We first review the basic structure of an atom, followed by a discussion of orbitals 
and shells. Finally, we review electron configurations, distinguishing between valence 
 electrons—electrons that can be used for bonding—and core electrons.

FIGURE 1-3 Quartz crystal Quartz 
(silicon dioxide) is the silicon analog of 
carbon dioxide. Whereas carbon dioxide 
is gaseous, silicon dioxide is a solid.
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1.3a The Structure of the Atom
At the center of an atom (Fig. 1-4) is a positively charged nucleus, composed of pro-
tons and neutrons. Surrounding the nucleus is a cloud of negatively charged electrons, 
attracted to the nucleus by simple electrostatic forces (the forces by which opposite 
charges attract one another and like charges repel one another). It is important to real-
ize that individual electrons are incredibly small, even much smaller than the nucleus. 

FIGURE 1-4 Basic structure of the 

atom Atoms are composed of a nucleus 
surrounded by a cloud of electrons. 
Protons (white) and neutrons (gray) make 
up the nucleus. (This figure is not to 
scale. If it were, the size of the electron 
cloud is so much larger than the size of 
the nucleus that its radius would be on 
the order of 500 meters!)

Electron

cloud

Nucleus

(proton = white;

neutron = gray)

Chemistry with Chicken Wire

Even though carbon takes center stage in organic chemistry, organic molecules invariably include 
other atoms as well, such as hydrogen, nitrogen, oxygen, and halogen atoms. Some of the most 
exciting chemistry today, however, involves extended frameworks of only carbon. A single flat 
sheet of such a framework is called graphene, and resembles molecular chicken wire. Wrapped 
around to form a cylinder, a graphene sheet forms what is called a carbon nanotube. Pure carbon 
can even take the form of a soccer ball—the so-called buckminsterfullerene.

A sheet of graphene A carbon nanotube Buckminsterfullerene

These structures themselves have quite interesting electronic properties, giving them a bright fu-
ture in nanoelectronics. Carbon nanotubes and buckminsterfullerenes have high tensile strength, 
moreover, giving them potential use for structural reinforcement in concrete, sports equipment, 
and body armor. Chemical modification gives these structures an even wider variety of potential 
uses. Graphene oxide, for example, has promising antimicrobial activity, and attaching certain 
molecular groups to the surface of a carbon nanotube or buckminsterfullerene has potential for 
use as drug carriers for cancer therapeutics. 
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However, the space that electrons occupy (i.e., the electron cloud ) is much larger than 
the nucleus. In other words, 

■ The size of an atom is essentially defined by the size of its electron cloud. 

 ■ The vast majority of an electron cloud (and thus the vast majority of an atom) is 
empty space.

Table 1-1 lists the mass and charge of each of these elementary particles. Notice 
that the masses of the proton and neutron are significantly greater than that of the 
electron, so the mass of an atom is essentially the mass of just the nucleus. 

An atom, by definition, has no net charge. Consequently, the number of elec-
trons in an atom must equal the number of protons. The number of protons in 
the nucleus, called the atomic number (Z ), defines the element. For example, a 
nucleus that has six protons has an atomic number of 6, and can only be a carbon 
nucleus.  

If the number of protons and the number of electrons are not equal, then the 
entire species (that particular combination of protons, neutrons, and electrons) bears 
a net charge, and is called an ion. A negatively charged ion, an anion (pronounced 
AN-ion), results from an excess of electrons. A positively charged ion, a cation (pro-
nounced CAT-ion), results from a deficiency of electrons. 

Solved problem 1.1 How many protons and electrons does a cation of the 
carbon atom have if its net charge is 11?

Think How many protons are there in the nucleus of a carbon atom? Does a cation 
have more protons than electrons, or vice versa? How many more, given the net charge 
of the species?

Solve A carbon atom’s nucleus has six protons. A cation with a 11 charge should have 
one more proton than it has electrons, so this species must have five electrons.

problem 1.2 (a) How many protons and electrons does an anion of the carbon 
atom have if its net charge is 21? (b) How many protons and electrons does a cation of 
the oxygen atom have if its net charge is 11? (c) How many protons and electrons does 
an anion of the oxygen atom have if its net charge is 21?

1.3b Atomic Orbitals and Shells
Electrons in an isolated atom reside in atomic orbitals. As we shall see, the exact loca-
tion of an electron can never be pinpointed. An orbital, however, specifies the region 
of space where the probability of finding a given electron is high. More simplistically, 
we can view orbitals as “rooms” that house electrons. Atomic orbitals are examined in 
greater detail in Chapter 3; for now, it will suffice to review some of their more basic 
concepts.

1. Atomic orbitals have different shapes. An s orbital, for example, is a sphere, 
whereas a p orbital has a “dumbbell” shape with two lobes (Fig. 1-5). Each orbital 
is centered on the nucleus of its atom or ion.

2. Atomic orbitals are organized in shells (also known as energy levels). A shell is de-
fined by the principal quantum number, n. There are an infinite number of shells 
in an atom, given that n can assume any integer value from 1 to infinity.

 a. The first shell (n 5 1) contains only an s orbital, called “1s.” 
 b. The second shell (n 5 2) contains one s orbital and three p orbitals, called “2s,” 

“2px ,” “2py ,” and “2pz .”
 c. The third shell (n 5 3) contains one s orbital, three p orbitals, and five d orbitals.

TABLE 1-1 Charges and 
Masses of Subatomic 
 Particles

Particle
Charge  
(a.u.)

Mass 
(a.u.)

Proton 11 ,1

Neutron 0 ,1

Electron 21 ,0.0005

a.u. 5 atomic units

FIGURE 1-5 Orbitals Orbitals 
represent regions in space where an 
electron is likely to be. An s orbital is 
spherical, and a p orbital is a dumbbell.

p Orbitals Orbital
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3. Up to two electrons are allowed in any orbital. 
a. Therefore, the first shell can contain up to two electrons (a duet).
b. The second shell can contain up to eight electrons (an octet).

 c. The third shell can contain up to 18 electrons.
 4. With increasing shell number, the size and energy of the atomic orbital increases. 

For example, comparing s orbitals in the first three shells, the size and energy 
increase in the order 1s , 2s , 3s, as shown in Figure 1-6. Similarly, a 2p orbital is 
smaller in size and lower in energy than a 3p orbital.

 5. Within a given shell, an atomic orbital’s energy increases in the following order:  
s , p , d, etc. In the second shell, for example, the 2s orbital is lower in energy 
than the 2p. 

1.3c  Ground State Electron Configurations: 
Valence Electrons and Core Electrons 

The way in which electrons are arranged in atomic orbitals is called the atom’s  electron 
configuration. The most stable (i.e., the lowest energy) electron configuration is called 
the ground state configuration. Knowing an atom’s ground state configuration pro-
vides insight into the atom’s chemical behavior, as we will see.

With the relative energies of atomic orbitals established, an atom’s ground state 
electron configuration can be obtained by applying the following three rules:

1. Pauli’s exclusion principle: No more than two electrons (i.e., zero, one, or two 
electrons) can occupy a single orbital; two electrons in the same orbital must have 
opposite spins.

 2. Aufbau principle: Each successive electron must fill the lowest energy orbital 
available.

 3. Hund’s rule: All orbitals at the same energy must contain a single electron before a 
second electron can be paired in the same orbital.

According to these three rules, the first 18 electrons fill orbitals as indicated in 
Figure 1-7. 

In Figure 1-7, place a box around all of the orbitals in the second shell and label 
them.

Answers to Your Turns are in the back of the book.

1.1 Your Turn

In the ground state, the six electrons found in a carbon atom would fill the orbitals 
as shown in Figure 1-8, with two electrons in the 1s orbital, two electrons in the 2s 
orbital, and one electron in each of two different 2p orbitals (it doesn’t matter which 
two). The shorthand notation for this electron configuration is 1s22s22p2. 

Knowing the ground state electron configuration of an atom, we can distinguish 
valence electrons from core electrons.

FIGURE 1-6 Relationship between 

principal quantum number, orbital 

size, and orbital energy As the shell 
number of an orbital increases, its size 
and energy increase, too. The horizontal 
black lines indicate each orbital’s energy.
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FIGURE 1-7 Energy diagram of 

atomic orbitals for the first 18 

electrons The order of electron filling is 
indicated in parentheses. Each horizontal 
black line represents a single orbital. 
Each successive electron fills the lowest 
energy orbital available. Notice in the 2p 
and 3p sets of orbitals that no electrons 
are paired up until after the addition of 
the fourth electron.
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■ Valence electrons are those occupying the highest energy (i.e., valence) shell. For 
the carbon atom, the valence shell is the n 5 2 shell.

■ Core electrons occupy the remaining lower energy shells of the atom. For the car-
bon atom, the core electrons occupy the n 5 1 shell.

The notion of valence electrons is important because, as we discuss in Section 1.5, 
bonding is governed primarily by the valence electrons. As we can see in Figure 1-8, for 
example, carbon has four valence electrons and two core electrons, so bonding involv-
ing carbon is governed by those four valence electrons.

In Figure 1-8, place a circle around the valence electrons and label them. Place a 
box around all of the core electrons and label them.

Your Turn 1.2

The periodic table is organized in such a way that the number of valence shell elec-
trons of an atom can be read from the element’s group number (a copy of the periodic table 
appears inside the book’s front cover). Carbon is located in group 4A, consistent with 
its four valence electrons. Similarly, chlorine is found in group 7A, so it has seven va-
lence electrons. Its ground state electron configuration is  1s22s22p63s23p5; that is, seven 
electrons occupy the third shell (the valence shell).

Atoms are especially stable when they have completely filled valence shells. This is ex-
emplified by the noble gases (group 8A), such as helium and neon, because they have 
completely filled valence shells and they do not form bonds to make compounds. 
Although the specific origin of this “extra” stability is beyond the scope of this book, 
the consequences are the basis for the “octet rule ” and the “duet” rule we routinely use 
when drawing Lewis structures (Section 1.5).

Solved problem 1.3 Write the ground state electron configuration of the nitro-
gen atom. How many valence electrons does it have? How many core electrons does it have?

Think How many total electrons are there in a nitrogen atom? What is the order in 
which the atomic orbitals should be filled (see Fig. 1-7)? What is the valence shell and 
where do the core electrons reside?

Solve There are seven total electrons (Z 5 7 for N). The first two are placed in the 1s 
orbital and the next two in the 2s orbital, leaving one electron for each of the three 2p 
orbitals. The electron configuration is 1s22s22p3. The valence shell is the second shell, 
so there are five valence electrons and two core electrons.

problem 1.4 Write the ground state electron configuration of the oxygen atom. 
How many valence electrons are there? How many core electrons are there?

1.4  The Covalent Bond: Bond Energy 
and Bond Length

A covalent bond is one of two types of fundamental bonds in chemistry; the other, an 
ionic bond, is discussed in Section 1.8. A covalent bond is characterized by the sharing 
of valence electrons between two or more atoms, as shown for two H atoms in Figure 1-9. 

In Section 1.5, we will explore how various molecules can be constructed from 
atoms through the formation of such bonds, but first we must examine more closely 
the nature of covalent bonds. In particular, why do they form at all? 

We can begin to answer these questions by examining Figure 1-10a, which illustrates 
how the energy of two H atoms changes as a function of the distance between their 

FIGURE 1-8 Energy diagram for the 

ground state electron configuration 

of the carbon atom This configuration 
is abbreviated 1s22s22p2.
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FIGURE 1-9 A covalent bond A 
covalent bond is the sharing of two 
electrons between nuclei.
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nuclei. Namely, when two H atoms separated by a large distance are brought together, 
their total energy begins to decrease. At one particular internuclear distance, the energy 
of the molecule is at a minimum, while at shorter distances the energy rises dramatically. 

The two H atoms are most stable at the internuclear distance that corresponds 
to that energy minimum, a distance called the bond length of the HiH bond. The 
energy that would be required to remove the H atoms from that internuclear distance 
to infinity is the bond strength, or bond energy, of the HiH bond.

We can relate this process to a more familiar one of a ball rolling down a hill 
(Fig. 1-10b). A ball at the top of a hill has more potential energy than the ball at the 
bottom of the hill. This is why the ball at the top of the hill will tend to roll downhill, 
coming to rest at the bottom. By the same token, it requires energy to roll the ball from 
the bottom of the hill back to the top.

Estimate the bond energy of the bond represented by Figure 1-10a. 1.3 Your Turn

The shape of the energy curve in Figure 1-10a is similar to that which describes 
the stretching and compressing of a spring connecting two masses (Fig. 1-11). The 
minimum in energy corresponds to the spring’s rest position—that is, when it is nei-
ther stretched nor compressed. Both stretching and compressing the spring from its 
rest position require energy. Thus, it is often convenient to think of a covalent bond as 
a spring that connects two atoms. (This view of the chemical bond is extended further 
in the discussion of infrared spectroscopy in Chapter 15.)

Solved problem 1.5 In the diagram below, which curve represents a stron-
ger  covalent bond?
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Internuclear bond distance

Think How can bond breaking be represented for each curve? Which of those 
 processes requires more energy?

FIGURE 1-10 Formation of a chemical bond (a) Plot of energy as a function of internuclear 
distance for two H atoms. The H atoms are most stable at the distance at which energy is a 
minimum. (b) A ball at the top of a hill becomes more stable at the bottom of the hill, and therefore 
tends to roll downhill.
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FIGURE 1-11 The spring model of 

a covalent bond The energy curve 
of a spring connecting two masses 
resembles that of the covalent bond 
shown in Figure 1-10a. Both stretching 
and compressing the spring from its rest 
position cause a rise in energy.
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